Root Cause Analysis

Presented by:
Priya Sarjoo
Director, Business Advisory Services

February 2, 2012
Agenda

- Definition
- Methodologies
- Problem identification
- Process understanding
- Cause identification
- Data collection & analysis
- Corrective action
Definition

• Root Cause Analysis:
 – Component of a corrective action process whereby failures or non-conformances are identified, causes are diagnosed and actions are taken to prevent recurrence
 – Focuses on identifying possible causes, collecting and analyzing data and determining actual cause(s)
 – A generic skill that can be applied to nearly any type of problem
Methodologies

• Various methodologies for conducting root cause analysis
 – Events and causal factor analysis
 – Change analysis
 – Barrier analysis
 – Risk tree analysis
 – Six Sigma (DMAIC)
Problem identification

• Effective root cause analysis requires deductive or logical thinking about cause-and-effect relationships

• Example:
 – Effect: Increase in number of cancer diagnoses
 – Possible Causes: ??
Problem identification (continued)

• Example:
 – Effect: Increase in number of cancer diagnoses
 – Possible Causes:
 • Increase in number of individuals tested
 • More precise testing techniques
 • Increased incidences of cancer
 • Others…
Problem identification (continued)

- Root cause analysis can be ineffective when you only focus on what is most visible, or most convenient

- Example:
 - Assuming errors are one time events which will not occur again
Problem identification (continued)

• Develop a thorough, succinct description which includes the following:
 – What?
 – Where?
 – Who?
 – When?
 – How much?

• Do not include or imply a cause
Process understanding

• Develop a process flowchart
 – Process flowcharts typically include inputs, processes and outputs
 – The flowchart should be prepared using both the current state as well as the standard (or correct) process
 – A flowchart helps identify where something has gone wrong in a process
 – The flowchart can also help identify data collection points
Process understanding *(continued)*

- Analyze each step within the flowchart for possible weaknesses
 - Lack of defined standards, incomplete process, broken process, non-compliance with process
- Focus on process failures instead of operator failure
Cause identification

- Develop theories about what is causing the problem
 - Examine the flowchart
 - Compare to standards
 - Compare to expected procedures
 - Use a logic tree (5 whys)
 - Use a cause-and-effect diagram (4 Ps)
• Differentiate between symptoms and causes
 – Symptoms are the *signals* that something is wrong
 – Causes are the *underlying reasons* which result in the symptom(s)

• Drill down from symptoms to system cause
Cause identification *(continued)*

Symptoms
- High levels of obsolete inventory

Obvious (physical) cause
- Inventory reserve analysis worksheets are incorrect

Underlying (system) cause
- “Virtual” warehouse locations are not pulled into the inventory aging report
Cause identification (continued)

• Analyze to identify possible causes
• Narrow causes down by identifying the ones most likely to have caused the error
 – Conduct a sanity check
 – Is it logical?
 – Is it supported by the data?
 – Is it probable?
Cause-and-effect analysis

• Drill down from symptoms to system cause
 – The “5 whys” process
 • Keep asking why something happened, until you get to a point where you can take action to correct the underlying system cause
Cause-and-effect analysis (continued)

Symptom: High Levels of Obsolete Inventory

Physical Cause:
- Inadequate Inventory Management
- Slow Sales

System Cause:
- Poor Visibility to Inventory Levels
- Insufficiently Trained Staff
- Priced Incorrectly
• Drill down from symptoms to system cause (*cont’d*)
 – The “4 Ps” process

- Insufficient training
- Un-reviewed calculations
- Computer problem
- No monthly validation

People

Place

High obsolete inventory

Procedures

Policies
Data collection

• Understand cause-and-effect
• Understand the process variables and how they can be measured
• Understand the data and how it can be gathered
• Decide on analysis methods
• Gather the data
Data collection methods

• Interview
• Observation
• Data review
• Scientific techniques
Data analysis

• Ensure the correct data is collected (i.e. data is pertinent to the issue under review)
• Determine the expected outcome
• Analyze the data
• Compare to expected outcome
Data analysis (continued)

• Obsolete inventory example:
 – Understand standards or established procedures for inventory management
 – Develop process flowchart showing inventory inputs, processes and outputs
 – Identify data to be collected and analyzed
 – Collect inventory aging by SKU, dollars and quantity
 – Re-perform inventory reserve calculation
 – Compare to existing reserve calculation
 – Identify inconsistencies
Corrective action

• Focus resources on where they would be best spent
 – Identify one problem/reason/cause which may have the largest impact (e.g. dollars, time, re-work, exposure, etc.)
 – Focus efforts on resolving the cause with the largest impact
Questions